Monte Carlo Analysis for IV&V

Outline

The kinds of problems

Why it's often hard to be certain

How it's done

What results look like

How IV&V can be involved

Common SC Problems

- How confident am I that a SUD will not fail?
- ... not fail before time T?
- How confident booster will deliver S/C within
 - $-<\sigma_x>$ meters of a specified point
 - $-<\sigma_t>$ seconds of a specified time?
- How likely is a stable landing?
- Do I have enough bandwidth or other network components?

Why Not 100%

- Noise errors A/D uncertainty
- Inexact measurements
- Data processing (round-off, etc.)
- Imperfect knowledge of system (& meas.)
- Not only you can't hit the nail on the head, you generally can't tell ahead of time how badly you'll miss

Standard Deviation and Confidence

- σ is a measure of spread
- $\sigma^2 = E[(x-\mu)^2]$ - "3\sigma" means 99.7% for normal 3
- Distribution extends to ∞

- 68.2% confidence of being within σ of μ
- Other distributions have μ and σ and confidence

Bathroom Scale Example

- Guaranteed accurate (big assumption!)
 - Uncertain to $\pm c$, where c = 0.5 or 1.0 or 0.1
 - -z = x + e, z is measurement, x is truth, e is error
 - e has a simple probability density function
 - So we can express confidence in the reading:
 - Average error = 0
 - 100% that |error| ≤ c
 - 50% that $|error| \le c/2$
 - Etc
- Additional error could arise from manufacturing defects, leaving the accuracy unknown
 - Does the spring change with temperature or time (years)?
 - Does the error change with the weight? Linearly?

Fundamental Example: $I = \int_0^1 e^{-x^2} dx$

- I = fraction of unit square below curve $y = f(x) = e^{-x^2}$
- Choose N random points; I ~ fraction below curve
- Better: choose N random numbers x_i
- $I \sim 1/N \sum f(x_i)$
- Increased accuracy for given N (smaller standard deviation)

How to do Monte Carlo Analysis

- Model or simulate process/system, errors/noise, and measurement/estimate
- Accumulate data over a set of many runs
- Compute statistics
- More sets of more runs & more statistics
- KEY QUESTION: Do the results appear to converge as you increase N?

Can/Should we do This? (not if you can help it)

- Is there a process we can't analyze adequately, but we can execute or simulate?
- Is "noise" complicated?
- Could our results improve a mission?

What it Looks Like

- Table showing mean & st dev vs. N to indicate convergence
- Comparison of mean & st dev for various input parameters

What's a SME to Analzye?

- Simulation for comparison with the actual process,
 - It has requirements, design, code, and test
 - Also for the measurements and estimates
- Error model
- Statistical characteristics of the input noise
- Enough runs; i.e., do you believe there is convergence?
- Do the results make sense?

Viking Lander Touchdown

Figure 1.- Viking lander configuration.

Three Questions

- 1. What are the 3-sigma design values for the maximum rigid-body acceleration, minimum clearances, and maximum compression and tension strut forces and strokes?
- 2. What is the probability the lander will become unstable as a result of landing on a steep slope?
- 3. What is the probability the body of the lander will strike a rock?

Entry and Landing Phases

- Entry is from deorbit burn until a leg touches
 - Simulated in detail
 - Resulting mean and standard deviation used for random variables as input to next phase
- Landing is until all movement stops

Conditions at end of Entry

TABLE I.- MEANS AND STANDARD DEVIATIONS FOR INITIAL CONDITIONS
OBTAINED FROM 100 TRAJECTORIES FOR THREE ATMOSPHERES

Quantity	Maximum density		Mean density		Minimum density	
	Mean	s	Mean	s	Mean	s
		Engine	thrust, N (lbf)			
Engine 1	756.6	20.5	756.2	19.6	754.4	19.6
	(170.1)	(4.6)	(170.0)	(4.4)	(169.6)	(4.4)
Engine 2	642,8	20.0	642.8	19.6	641.9	19.6
	(144.5)	(4.5)	(144.5)	(4.4)	(144.3)	(4.4)
Engine 3	751.7	19.1	751.3	19.1	750.0	18.7
	(169.0)	(4.3)	(168.9)	(4.3)	(168.6)	(4.2)
		Body angular r	ates, rad/s (de	g/sec)		
Pitch	7.68 × 10 ⁻⁵	3.26 × 10-4	8.20 × 10 ⁻⁵	3.54 × 10-4	1.13 × 10 ⁻⁴	4.03 × 10 ⁻⁴
	(0.0044)	(0.0187)	(0.0047)	(0.0203)	(0.0065)	(0.0231)
Yaw	3.67 × 10-5 (0.0021)	4.14 × 10-4 (0.0237)	3.67 × 10-5 (0,0021)	4.36 × 10-4 (0.0250)	3.49×10^{-5} (0.0020)	5.10 × 10-4 (0.0292)
Roll	$-8.20 \times 10^{-5} \ (-0.0047)$	2.30×10^{-3} (0.1319)	2.97 × 10 ⁻⁵ (0.0017)	2.41 × 10-3 (0.1382)	-9.60 × 10 ⁻⁵ (-0.0055)	2.55 × 10-3 (0.1463)
		Body velo	city, mps (fps)			
X-axis	-0.0037	0.1042	-0.0037	0.1048	-0.0051	0.1063
	(-0.0120)	(0.3417)	(-0.0122)	(0.3437)	(-0.0168)	(0.3489)
Y-axis	0.0553	0.1351	0.0543	0.1351	0.0528	0.1351
	(0.1815)	(0.4434)	(0.1781)	(0.4432)	(0.1731)	(0.4434)
Z-axis	2.4257	0.1320	2.4322	0.1316	2.4388	0.1313
	(7.9583)	(0.4331)	(7.9797)	(0.4318)	(8.0012)	(0.4308)

Choosing the time increment

(a) Kinetic-energy ratio against time increment.

(b) Pitch-rate ratio against time increment.

(c) Velocity ratio against time increment.